
El legado científico de Einstein
Mauro Flores Montaño
Ingeniero Químico
Docente en la Facultad de Tecnología
Albert Einstein transformó la física, y nos sumergió en una visión inesperada de la naturaleza, sacudiendo los cimientos heredados y erigiendo nuevas estructuras conceptuales.
Un siglo después del "año admirable" 1905 del físico alemán Albert Einstein, año en el que este genial científico envió varios trabajos para su publicación a la prestigiosa revista alemana Annalen der Physik (AdP), sigue muy viva su presencia. ¿Por qué? Porque con cinco de esos trabajos transformó la física, y nos sumergió en una visión inesperada de la naturaleza, sacudiendo los cimientos heredados y erigiendo nuevas estructuras conceptuales. Para justificar nuestra deuda con Albert Einstein, resumiré este legado, ciñéndome a tres marcos: la luz, la materia, y el espacio-tiempo.
Antes de Albert Einstein, se creía que la luz era una onda, con su energía difuminada. Pero en realidad dicha energía está repartida en diminutos paquetes indivisibles (hoy llamados fotones). Cada fotón cede la energía solo en su totalidad, sin posibilidad de fragmentación. Así es como explicó en su primer trabajo de 1905 en AdP el llamado efecto fotoeléctrico. Este es el único de sus trabajos que él consideraba a la sazón como "muy revolucionario", y por el que se le otorgó el premio Nóbel en Física 1921 ("For his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect"). Desveló de este modo la dualidad onda-partícula para la luz, una dualidad que luego el físico y príncipe francés Louis de Broglie (premio Nóbel en Física 1929) extendería también a la materia, y que constituye uno de los principios fundamentales de la física cuántica. En gran parte de la tecnología de la vida cotidiana subyace el efecto fotoeléctrico: aparatos de visión nocturna, fotocopiadoras, detectores de luz, alarmas antirrobo, apertura automática de puertas, etc. No acabó aquí la aportación de Albert Einstein al campo de la luz. Unos años después (1916) introduciría sus famosos coeficientes para la emisión y absorción de la luz, aplicado medio siglo más tarde en el principio del funcionamiento láser, una de las herramientas más útiles de la vida actual.
Antes de Albert Einstein, había físicos y químicos insignes que dudaban de la existencia real de los átomos y moléculas. En su segundo trabajo de 1905 en AdP Einstein mostró los límites de la termodinámica clásica, cuando las fluctuaciones estadísticas visibles en el movimiento irregular de partículas en suspensión en un líquido violan la segunda de sus leyes, y sentó las bases del movimiento browniano (observado por primera vez en 1827 por el botánico escocés Robert Brown en pequeñas partículas de polen, en suspensión acuosa), como resultado de su bombardeo por las moléculas del fluido, con la propuesta radical de que es su desplazamiento medio, y no su errática velocidad, el observable a tener en cuenta experimentalmente. El cuarto trabajo de Einstein enviado a AdP en 1905, pero publicado en 1906, precedió en su concepción al segundo ya citado, y está basado en su tesis doctoral (Universidad de Zürich, 1905). En él suministró un método, basado en la hidrodinámica y en la teoría de la difusión, para estimar el número de Avogadro y el tamaño de moléculas de soluto en disoluciones diluidas no disociadas. (En el último y sexto de los trabajos enviados a AdP en 1905, publicado en 1906, Albert Einstein amplía ligeramente el segundo, sin contener nada radicalmente nuevo.) Los resultados de Einstein en este grupo de trabajos llevarían al físico francés Jean Baptiste Perrin (premio Nóbel en Física 1926) y colaboradores a nuevas medidas del número de Avogadro, a la determinación experimental de tamaños atómicos, y a desterrar para siempre el escepticismo de quienes dudaban de la realidad de los átomos y moléculas. En la actualidad, la teoría del movimiento browniano se ha ramificado al mundo de las finanzas (curvas de fluctuación de los valores en bolsa), a la robótica, a los análisis de mercado, a la toma de decisiones, etc. La aportación einsteiniana al campo de la materia continuaría: en 1906 demostró que los conceptos cuánticos eran extensibles a la materia macroscópica (calores específicos de los sólidos), dando con ello nacimiento a la moderna teoría de la materia condensada; y en 1924 amplió la estadística del físico indio Satyendranath Bose a los átomos de spin entero. Desde 1995 los condensados atómicos de Bose-Einstein son una realidad como quinto estado de la materia, con lugar preeminente en la investigación física y en la tecnología de vanguardia.
Finalmente, antes de Albert Einstein recibíamos de Newton un espacio y un tiempo absolutos, testigos mudos e inamovibles de cuanto ocurre en el Universo. Insatisfecho con cierta asimetría conceptual en la teoría del electromagnetismo, y en la incapacidad de la óptica para detectar el movimiento respecto del éter, Albert Einstein enunció en su tercer trabajo de 1905 en AdP el principio de relatividad. Con este principio, se vio forzado a romper la absolutidad del tiempo y del espacio. La simultaneidad pasó a ser un concepto relativo, y también las nociones de intervalos de tiempo y de longitud. En la física de altas energías se comprueba esto a diario. Como simple consecuencia de esta revisión del espacio-tiempo, obtuvo en su quinto trabajo de 1905 la equivalencia entre masa y energía, la famosa fórmula E = mc2. Ignoraba Albert Einstein en aquel momento el descomunal poder escondido en las entrañas de esta fórmula. Si bien el horror de Hiroshima y Nagasaki nos hace aún estremecer, hay que decir que también la luminosidad de nuestro astro rey (sin el cual la vida aquí sería inconcebible), y el funcionamiento de la tomografía de positrones, y la esterilización de alimentos, y un largo etcétera, son consecuencia de esa fórmula.
Para terminar, quiero mencionar la obra cumbre de Albert Einstein, la del año 1915, su teoría general de la relatividad. En ella dinamizó el espacio-tiempo, haciéndole participar de los avatares del Universo, curvándose donde hay mucha materia, y vibrando en ondas gravitatorias. Hasta ahora ha pasado con éxito todas las pruebas (falta por ver con más detalle su comportamiento cuando los campos gravitatorios son muy intensos, como ocurre en las vecindades de los púlsares o de los agujeros negros). Tanto la relatividad especial de 1905 como la general de 1915, a pesar de la pequeñez de sus efectos en situaciones no extremas, no solo son imprescindibles para una descripción muy precisa del mundo que nos rodea (grandes aceleradores, campos cuánticos, dinámica del sistema solar, arrastre de inerciales), sino también en asuntos de la vida ordinaria, tales como el correcto funcionamiento del sistema de posicionamiento global.
Tenía razón su biógrafo Albrecht Fölsing al afirmar que "never before and never since has a single person enriched science by so much in such a short time as Einstein did in his annus mirabilis".
Un siglo después del "año admirable" 1905 del físico alemán Albert Einstein, año en el que este genial científico envió varios trabajos para su publicación a la prestigiosa revista alemana Annalen der Physik (AdP), sigue muy viva su presencia. ¿Por qué? Porque con cinco de esos trabajos transformó la física, y nos sumergió en una visión inesperada de la naturaleza, sacudiendo los cimientos heredados y erigiendo nuevas estructuras conceptuales. Para justificar nuestra deuda con Albert Einstein, resumiré este legado, ciñéndome a tres marcos: la luz, la materia, y el espacio-tiempo.
Antes de Albert Einstein, se creía que la luz era una onda, con su energía difuminada. Pero en realidad dicha energía está repartida en diminutos paquetes indivisibles (hoy llamados fotones). Cada fotón cede la energía solo en su totalidad, sin posibilidad de fragmentación. Así es como explicó en su primer trabajo de 1905 en AdP el llamado efecto fotoeléctrico. Este es el único de sus trabajos que él consideraba a la sazón como "muy revolucionario", y por el que se le otorgó el premio Nóbel en Física 1921 ("For his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect"). Desveló de este modo la dualidad onda-partícula para la luz, una dualidad que luego el físico y príncipe francés Louis de Broglie (premio Nóbel en Física 1929) extendería también a la materia, y que constituye uno de los principios fundamentales de la física cuántica. En gran parte de la tecnología de la vida cotidiana subyace el efecto fotoeléctrico: aparatos de visión nocturna, fotocopiadoras, detectores de luz, alarmas antirrobo, apertura automática de puertas, etc. No acabó aquí la aportación de Albert Einstein al campo de la luz. Unos años después (1916) introduciría sus famosos coeficientes para la emisión y absorción de la luz, aplicado medio siglo más tarde en el principio del funcionamiento láser, una de las herramientas más útiles de la vida actual.
Antes de Albert Einstein, había físicos y químicos insignes que dudaban de la existencia real de los átomos y moléculas. En su segundo trabajo de 1905 en AdP Einstein mostró los límites de la termodinámica clásica, cuando las fluctuaciones estadísticas visibles en el movimiento irregular de partículas en suspensión en un líquido violan la segunda de sus leyes, y sentó las bases del movimiento browniano (observado por primera vez en 1827 por el botánico escocés Robert Brown en pequeñas partículas de polen, en suspensión acuosa), como resultado de su bombardeo por las moléculas del fluido, con la propuesta radical de que es su desplazamiento medio, y no su errática velocidad, el observable a tener en cuenta experimentalmente. El cuarto trabajo de Einstein enviado a AdP en 1905, pero publicado en 1906, precedió en su concepción al segundo ya citado, y está basado en su tesis doctoral (Universidad de Zürich, 1905). En él suministró un método, basado en la hidrodinámica y en la teoría de la difusión, para estimar el número de Avogadro y el tamaño de moléculas de soluto en disoluciones diluidas no disociadas. (En el último y sexto de los trabajos enviados a AdP en 1905, publicado en 1906, Albert Einstein amplía ligeramente el segundo, sin contener nada radicalmente nuevo.) Los resultados de Einstein en este grupo de trabajos llevarían al físico francés Jean Baptiste Perrin (premio Nóbel en Física 1926) y colaboradores a nuevas medidas del número de Avogadro, a la determinación experimental de tamaños atómicos, y a desterrar para siempre el escepticismo de quienes dudaban de la realidad de los átomos y moléculas. En la actualidad, la teoría del movimiento browniano se ha ramificado al mundo de las finanzas (curvas de fluctuación de los valores en bolsa), a la robótica, a los análisis de mercado, a la toma de decisiones, etc. La aportación einsteiniana al campo de la materia continuaría: en 1906 demostró que los conceptos cuánticos eran extensibles a la materia macroscópica (calores específicos de los sólidos), dando con ello nacimiento a la moderna teoría de la materia condensada; y en 1924 amplió la estadística del físico indio Satyendranath Bose a los átomos de spin entero. Desde 1995 los condensados atómicos de Bose-Einstein son una realidad como quinto estado de la materia, con lugar preeminente en la investigación física y en la tecnología de vanguardia.
Finalmente, antes de Albert Einstein recibíamos de Newton un espacio y un tiempo absolutos, testigos mudos e inamovibles de cuanto ocurre en el Universo. Insatisfecho con cierta asimetría conceptual en la teoría del electromagnetismo, y en la incapacidad de la óptica para detectar el movimiento respecto del éter, Albert Einstein enunció en su tercer trabajo de 1905 en AdP el principio de relatividad. Con este principio, se vio forzado a romper la absolutidad del tiempo y del espacio. La simultaneidad pasó a ser un concepto relativo, y también las nociones de intervalos de tiempo y de longitud. En la física de altas energías se comprueba esto a diario. Como simple consecuencia de esta revisión del espacio-tiempo, obtuvo en su quinto trabajo de 1905 la equivalencia entre masa y energía, la famosa fórmula E = mc2. Ignoraba Albert Einstein en aquel momento el descomunal poder escondido en las entrañas de esta fórmula. Si bien el horror de Hiroshima y Nagasaki nos hace aún estremecer, hay que decir que también la luminosidad de nuestro astro rey (sin el cual la vida aquí sería inconcebible), y el funcionamiento de la tomografía de positrones, y la esterilización de alimentos, y un largo etcétera, son consecuencia de esa fórmula.
Para terminar, quiero mencionar la obra cumbre de Albert Einstein, la del año 1915, su teoría general de la relatividad. En ella dinamizó el espacio-tiempo, haciéndole participar de los avatares del Universo, curvándose donde hay mucha materia, y vibrando en ondas gravitatorias. Hasta ahora ha pasado con éxito todas las pruebas (falta por ver con más detalle su comportamiento cuando los campos gravitatorios son muy intensos, como ocurre en las vecindades de los púlsares o de los agujeros negros). Tanto la relatividad especial de 1905 como la general de 1915, a pesar de la pequeñez de sus efectos en situaciones no extremas, no solo son imprescindibles para una descripción muy precisa del mundo que nos rodea (grandes aceleradores, campos cuánticos, dinámica del sistema solar, arrastre de inerciales), sino también en asuntos de la vida ordinaria, tales como el correcto funcionamiento del sistema de posicionamiento global.
Tenía razón su biógrafo Albrecht Fölsing al afirmar que "never before and never since has a single person enriched science by so much in such a short time as Einstein did in his annus mirabilis".
No hay comentarios:
Publicar un comentario